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ABSTRACT
Exponential growth of information generated by online so-
cial networks demands effective recommender systems to
give useful results. Traditional techniques become unquali-
fied because they ignore social relation data; existing social
recommendation approaches consider social network struc-
ture, but social context has not been fully considered. It
is significant and challenging to fuse social contextual fac-
tors which are derived from users’ motivation of social be-
haviors into social recommendation. In this paper, we in-
vestigate social recommendation on the basis of psychology
and sociology studies, which exhibit two important factors:
individual preference and interpersonal influence. We first
present the particular importance of these two factors in
online item adoption and recommendation. Then we pro-
pose a novel probabilistic matrix factorization method to
fuse them in latent spaces. We conduct experiments on both
Facebook style bidirectional and Twitter style unidirectional
social network datasets in China. The empirical result and
analysis on these two large datasets demonstrate that our
method significantly outperform the existing approaches.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering; J.4 [Computer Applications]: Social and Be-
havioral Sciences

General Terms
Algorithms, Experimentation

Keywords
Social Recommendation, Individual Preference, Interperson-
al Influence, Matrix Factorization
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1. INTRODUCTION
Users on social networks generate large volume of infor-

mation and urge recommender systems to provide useful re-
sults. Traditional techniques typically based on collabora-
tive filtering become unqualified in solving the social rec-
ommendation problem because they ignore social relation
or interaction data. Recently, Ma et al. [20, 21] propose a
framework of social recommender systems that utilize the
social relation data, from which friendships and trust rela-
tionships are exploited to regularize the latent user space,
but social contextual information has not been fully consid-
ered. It is significant and challenging to discover social con-
textual factors from contextual information and fuse them
into social recommendation.

Figure 1 shows the entire social contextual information
which can be derived from links on social networks. Users
intend to judge received items from its content and sender.
For example in Twitter, when a user receives a tweet that
is posted by one of his friends (the sender), he usually reads
its content to see whether the item is interesting. We can
get this knowledge from item content and user-item interac-
tion information. He also cares about who the sender is and
whether the sender is a close friend or authoritative. If more
than one of friends send him the same tweet, he may read
it more attentively. This knowledge can be learnt from so-
cial relation and user-user interaction information. Both of
these aspects are important for the user to decide whether to
adopt (e.g. retweet, comment) the item. The above can be
summarized as two contextual factors: (1) individual pref-
erence and (2) interpersonal influence.

Besides the experiential assumptions, psychology and so-
ciology studies have proved that individual preference and
interpersonal influence affect users’ decisions on information
adoption. In Bond’s work[5], it is indicated that individuals
are to some extent influenced by others’ behaviors, rather
than making decisions independently (i.e. purely preference
driven). In [25], web-based experiments are designed for mu-
sic adoption prediction in an artificial music market. This
work demonstrates that the introduction of interpersonal
influence into the preference driven decision process (as is
the case in real social networks) makes user behaviors more
complex and thus increases the unpredictability of the item
adoption. Therefore, only when individual preference and
interpersonal influence are properly incorporated into rec-
ommendation, the unpredictability can be reduced and the
recommendation performance can be improved accordingly.



Figure 1: From Social Contextual Information to
Social Contextual Factors

To address this problem, we propose a social contextual
recommendation framework (as shown in Figure 2) based
on a probabilistic matrix factorization method to incorpo-
rate individual preference and interpersonal influence to im-
prove the accuracy of social recommendation. More specifi-
cally, we factorize the user-item interaction matrix into two
intermediated latent matrices: user-item influence matrix
and user-item preference matrix, which are generated from
three objective latent matrices: user latent feature matrix,
item latent feature matrix, and user-user influence matrix.
Moreover, as we can partially observe individual preference
and interpersonal influence based on historical user-item and
user-user interaction data, we further utilize the observed
contextual factors to compute the three objective latent ma-
trices.

We’ve conducted experiments on two real social network
datasets. One is collected from Renren (www.renren.com),
a Facebook style website in China; and the other is collected
from Tencent Weibo1(t.qq.com), a Twitter style website in
China. The two datasets represent two typical social net-
work datasets, one for bidirectional social relations, and the
other for unidirectional social relations. We show that so-
cial contextual factors can greatly boost the performance
of recommender systems on social network data, and our
method greatly outperforms the previous algorithms by a
large margin. We attribute this result to the incorporation
of complete social contextual factors from both individual
and interpersonal sides, and experiments verify this conclu-
sion.

This paper is organized as follows. Related work is intro-
duced in section 2. We introduce the effectiveness of two
contextual factors with studies on social datasets in section
3. Our social contextual model is formulated in section 4 and
experimental results are reported in section 5. Conclusion
comes in section 6.

2. RELATED WORKS
In this section, we review several major approaches to rec-

ommendation methods. Collaborative filtering and content-
based filtering have been widely used to help users find out
the most valuable information. With the emerge of social
networks, researchers design trust-based [22, 23, 11] and
influence-based [16, 17, 10, 7] methods to take use of the
power coming from user relationships for recommendation.
Matrix factorization methods have been proposed for social

recommendation due to their efficiency to dealing with large
datasets. Although there are some mixture models of these
methods, it is valuable to understand social recommendation
from users’ motivation of item adoption.

Collaborative filtering methods have broad applications,
which are divided into two categories, i.e. memory-based
and model-based. In the memory based methods, item-
based approaches [26, 14] calculate the similarity between all
users based on their ratings of items. Si et al. [27] combine
collaborative filtering and content-based filtering [1] which
selects items based on the correlation between the contents
of items and preferences of users. The model-based method-
s learn a model based on patterns recognized in the ratings
of users using Bayesian networks and other clustering tech-
niques [6, 8, 19]. Collaborative filtering only requires the
information about user interactions, but it is not able to
make full use of the graph-based social relations and rich
social knowledge including user profiles and detailed item
descriptions.

Recently, several matrix factorization methods [18, 13, 14]
have been proposed for collaborative filtering. The matrix
approximations all focus on representing the user-item rat-
ing matrix with low-dimensional latent vectors [24, 15, 12].
Recognizing that influence is a subtle force that governs the
dynamics of social networks [16, 17], influence-based rec-
ommendation [10] involves interpersonal influence brought
by senders and receivers into social recommendation cases.
Trust-based approaches [22, 23, 11] exploit the trust net-
work among users and make recommendations based on the
ratings of users who are directly or indirectly trusted. SoRec
[20] is proposed as a probabilistic factor analysis framework
which fuses the users’ tastes and their trusted friends’ favors
together. Yang et al. [30] propose that information con-
tained in user-service interactions can help predict friendship
propagations and vice versa. They use data from both user-
item interactions and user-user relations. Aiming at improv-
ing recommender systems by incorporating users’ social net-
work information in both friend network and trust network,
Ma et al. [21] propose a matrix factorization framework
with social regularization. But this work only constrains us-
er feature vectors from interpersonal side but ignores users’
individual side, which makes the framework lack of complete
contextual information to further improve the recommenda-
tion accuracy. However, it is still an open issue about what
factors motivate user adoption on recommended items and
how can they be effectively integrated to further improve
the accuracy of social recommendation.

From psychological and sociological views, Bandura [2]
gives a social cognitive theory of mass communication and
argues that communication systems operate through two
pathways. In the direct pathway, they promote changes by
informing, enabling, motivating, and guiding participants
to get what they prefer. In the socially mediated pathway,
media influences participants to social networks and com-
munities that provide natural incentives and personalized
guidance. More previously, Benjamin [3] shows the similar
opinion that factors such as cognition, feeling, taste, inter-
est and interpersonal relationship develop the structure of
social behaviors and interactions. On the social web, these
two factors exactly represent individual preference and in-
terpersonal influence, which motivate us to propose a social
contextual recommendation framework to incorporate them
by analyzing both user motivation and application mecha-



Figure 2: An illustrator on social contextual recommendation framework. Receiver is the user who receives
the item (e.g., post, retweet, etc.) and sender is the receiver’s friend or followed user who generated the
item.

nism to recommender systems for social networks. In our
paper, we incorporate both individual preference and inter-
personal influence in a principled manner.

3. SOCIAL CONTEXTUAL FACTORS
In this section, we will demonstrate the existence and sig-

nificance of social contextual factors (including individual
preference and interpersonal influence) for social recommen-
dation on real large datasets.

Given an item, the behavior of user adoption depends on
individual preference to understand whether the user likes
it or not, and interpersonal influence to tell whether the us-
er has tight relationships with the item senders (e.g. the
followed users who generate or retweet the tweet in Twit-
ter) or not. Based on historical data, we apply LDA [4] on
the web post (e.g. tweet) content and extract topic-level
distributions of items. From user behavior history, we sum-
marize how much user u likes item a with a näıve preference
measurement as

Pu(a) = Ta · (
1

|A(u, a)|

∑

a′∈A(u,a)

Ta′) (1)

where A(u, a) is the set of items adopted by user u excluding
a, and Ta is the topic distribution of item a.

To describe interpersonal influence from user-user inter-
actions on social web, we calculate the percentage of recom-
mended items adopted by u from the item a:

Iu(a) =
1

|V (u, a)|

∑

v∈V (u,a)

|S(u, v) ∩A(u)|

|S(u, v)|
(2)

where V (u, a) is the set of senders who send item a to user
u, S(u, v) is the set of items sent from v to u, and A(u) is
the set of items that u adopts.

We classify the items into adopted and refused ones ac-
cording to user behaviors, and plot the pairs (u, a) as points
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Figure 4: Percentage of Users vs. Correlation Be-
tween Preference and Influence

w.r.t. individual preference Pu(a) and interpersonal influ-
ence Iu(a) in Figure 3, which shows that users intend to
adopt items with better preference scores and from higher
influential friends or followers in both Facebook and Twitter
style networks.

In order to demonstrate that individual preference and
interpersonal influence are not only effective but also com-
plementary social contextual factors, we calculate their cor-
relations in social recommendation cases. We use P and I
for each user to denote preference and influence of his adopt-
ed items. The Pearson correlation is defined as

ρP,I =
cov(P, I)

σPσI

=
E[(P − µP )(I − µI)]

σPσI

(3)

The correlation is 1 or -1 in the case of perfect positive or
negative linear relationship, and zero if preference and influ-
ence are uncorrelated. In Figure 4, the absolute correlation
values of more than 40% users are less than 0.2 and the
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Figure 3: Comparison of Individual Preference and Interpersonal Influence on Adopted and Refused Items:
(a) Renren Dataset (b) Tencent Weibo Dataset

values of around 70% are less than 0.4. Thus we conclude
that individual preference and interpersonal influence can
be applied as two complementary social contextual factors
in recommendation.

4. SOCIAL CONTEXTUAL MODEL
In this section, we will introduce details of our social con-

textual recommendation model. First, we formally define
the problem of social recommendation. Suppose that we
have M users with the i-th user denoted as ui, and N items
with the j-th item denoted as pj .

We denote the information adoption matrix asR ∈ {0, 1}M×N ,
with its (i, j)-th entry

Rij =

{

1 if ui adopted pj
0 otherwise

(4)

Then the social recommendation problem is converted to
predicting the unobserved entries in the information adop-
tion matrix R based on the observed entries and other fac-
tors.

In our model, we suppose that whether a user adopts an
item on social networks is determined by three aspects: (1)
what’s the item (e.g. descriptive contents)? (2) what items
does the user like? and (3) who are the senders?

Let U ∈ R
k×M be the latent user feature matrix, V ∈

R
k×N be the latent item feature matrix. S ∈ R

M×M is the
interpersonal influence matrix, with each entry Sij repre-
senting the degree of influence user ui has on user uj . It
should be noted that Sij > 0 if and only if ui is the friend of
uj in social network services such as Facebook and Renren,
or is followed by uj in microbloggings such as Twitter and
Tencent Weibo. G ∈ R

N×M is the item sender matrix, with
entry Gij = 1 meaning that uj sends the item pi and vice
versa. With these denotations and the assumption that users
can only receive items from their friends as social networks
usually do (Gii = 0), the social recommendation problem
is to find out U,V,S so that ((SG⊤) ⊙ (U⊤V)) can well
approximate the observed entries in R without overfitting,
where ⊙ is the Hadamard Product.

In our case, we know the contents of items, user behaviors
over the items, and the interactions between users. From
these historical data, we can derive the item content repre-
sentation, individual preference, and interpersonal influence.

We compute the user-user preference similarity matrix W ∈
R

M×M , item-item content similarity matrixC ∈ R
N×N , and

user-user interaction matrix F ∈ R
M×M as

Wi,j =

∑

a∈A(ui)

Pui
(a)

|A(ui)|
·

∑

a′∈A(uj)

Puj
(a′)

|A(uj)|
(5)

Ci,j = Tai
· Taj

(6)

Fi,j = |S(ui, uj) ∩A(ui)| (7)

Though the accuracy of similarity matrices W and C de-
pends on LDA performing on previous data, it is fair towards
competing methods in experiments to share these matrices.

With the hypothesis that the similarities in observed s-
paces are consistent with the latent spaces, we regularize the
three latent spaces by observed matrices (social contextual
factors) in that: (1) the users that are similar in hidden user
space have similar preferences (derived from preference sim-
ilarity matrix); (2) the items that are similar in hidden item
space have similar descriptive contents (derived from con-
tent similarity matrix); (3) high interpersonal influence in
the hidden influence space generates frequent interpersonal
interactions; (4) the product of user hidden space and item
hidden space corresponds to the users’ individual preference
on the items; (5) the product of interpersonal influence and
individual preference is proportional to the probability of
item adoptions.

As the model performance is evaluated by root mean square
error (RMSE) on the test set, we adopt a probabilistic linear
model with Gaussian observation noise as in [24]. Here we
define the conditional distribution over the observed entries
in R as:

P (R|S,U,V, σ
2
R) =

M
∏

i=1

N
∏

j=1

N (Rij |SiG
⊤
j ⊙U⊤

i Vj , σ
2
R) (8)

By incorporating the social contextual factors, we define



the posterior distribution as

P (S,U,V|R,G,W,C,F,Ω) (9)

=
P (R,W,C,F,G|S,U,V,Ω)P (S,U,V|Ω)

P (R,G,W,C,F,Ω)

∝ P (R|S,U,V,Ω)P (W|U,Ω)P (C|V,Ω)P (F|S,Ω)

P (S|Ω)P (U|Ω)P (V|Ω)

=
∏

i,j

N (Rij |SiG
⊤
j ⊙U⊤

i Vj , σ
2
R)

∏

p,q

N (Wpq|U
⊤
p Uq, σ

2
W )

∏

m,n

N (Cmn|V
⊤
mVn, σ

2
C)

∏

s,t

N (Fst|Sst, σ
2
F )

∏

x

N (Sx|0, σ
2
S)

∏

y

N (Uy |0, σ
2
U )

∏

z

N (Vz|0, σ
2
V )

where Ω denotes that zero-mean spherical Gaussian priors
[28] are placed on latent feature vectors and observed ma-
trices. Then

lnP (S,U,V|R,G,M,C,F,Ω) (10)

∝ −
1

2σ2
R

∑

i,j

(Rij − SiG
⊤
j ⊙U⊤

i Vj)
2

−
1

2σ2
W

∑

p,q

(Wpq −U⊤
p Uq)

2

−
1

2σ2
C

∑

m,n

(Cpq −V⊤
p Vq)

2 −
1

2σ2
F

∑

s,t

(Fst − Sst)
2

−
1

2σ2
S

∑

x

S⊤
x Sx −

1

2σ2
U

∑

y

U⊤
y Uy −

1

2σ2
V

∑

z

V⊤
z Vz

Maximizing the posterior distribution is equivalent to mini-
mizing the sum-of-squared errors function with hybrid quadrat-
ic regularization terms:

J = ||R− SG⊤ ⊙U⊤V||2F + α||W −U⊤U||2F (11)

+β||C −V⊤V||2F + γ||S−F||2F

+δ||S||2F + η||U||2F + λ||V||2F

where α =
σ2

R

σ2

W

, β =
σ2

R

σ2

C

, γ =
σ2

R

σ2

F

, δ =
σ2

R

σ2

S

, η =
σ2

R

σ2

U

, λ =
σ2

R

σ2

V

,

and ||.||F is the Frobenius norm.
We can adopt a block coordinate descent scheme to solve

the problem. That is, starting from some random initializa-
tion on S,U,V, we solve each of them alternatively with the
other two matrices fixed and proceed step by step until con-
vergence. As the objective is obviously lower bounded by 0
and the alternating gradient search procesure will reduce it
monotonically, the algorithm is guaranteed to be convergen-
t. In this paper, we use the gradient search method to solve
the problem. Specifically, the gradients of the objective with

respect to the variables are

∂J

∂S
= 2

(

−R(G⊙V⊤U) + (SG⊤ ⊙U⊤V)G

+γ(S−F) + δS) (12)

∂J

∂U
= 2

(

−VR⊤ +V(GS⊤ ⊙V⊤U)− 2αUW

+2αUU⊤U+ ηU
)

(13)

∂J

∂V
= 2

(

−UR+U(SG⊤ ⊙U⊤V)− 2βVC

+2βVV⊤V + λV
)

(14)

Thus, we apply the following gradient based approach on
our social contextual model in Algorithm 1. J decreases the
fastest in the direction of gradients during each iteration and
the sequence (J (t)) converges to the desired minimum.

Algorithm 1 Social Contextual Model Gradient Algorithm

Require: 0 < α
(t)
S , α

(t)
U , α

(t)
V < 1, t = 0. Initialization

J (0) = J (S(0),U(0),V(0)).

Ensure: J (0) ≥ 0, J (t+1) < J (t)

for t = 1, 2, · · · do

Calculate ∂J
∂S

(t−1)
, ∂J

∂U

(t−1)
, ∂J

∂V

(t−1)

S(t)=S(t−1) − α
(t−1)
S · ∂J

∂S

(t−1)

U(t)=U(t−1) − α
(t−1)
U · ∂J

∂U

(t−1)

V(t)=V(t−1) − α
(t−1)
V · ∂J

∂V

(t−1)

J (t) ← J (S(t)
,U(t)

,V(t))

end for

Our model can be applied in the real system to deal with
incrementally increasing data. It has been proved both s-
torage and computational efficient by solving the smoothly
evolved factorized matrices in [29].

5. EXPERIMENTS

5.1 Datasets Description
We collect data from Renren, a typical social networking

service that enables users to put on their profiles and add
friends. One of the most popular actions on Renren is shar-
ing blogs, photos and external video links (denoted as items
in the paper). After an item is shared by a user, the item will
be sent to the user’s friends and appear in his friends’ pages
in real time. We crawled relationships and shared items of
nearly 1 million users from February 2007 to December 2009.
The statistics of Renren dataset are summarized in Table 1.

Meanwhile, we crawled data from Tencent Weibo, which
allows users to follow any other user and receive messages
from those followed users. Like Twitter, it also empower-
s users to spread information by forwarding the messages.
We crawled tweets, retweets and user lists during January
2011 from more than 100 thousand users. The statistics of
Tencent Weibo dataset are summarized in Table 2.

In Figure 5, we show the characteristics of Renren and
Tencent Weibo datasets by plotting curve (a) the number
of users with respect to the number of shared or forwarded
posts (calculated by

∑

i Gij for user uj) and curve (b) the



Table 1: Statistics of Renren Dataset
Value Description

939,363 user number
1,625,689 sharing item number
5,829,368 sharing behavior number

Table 2: Statistics of Tencent Weibo Dataset
Value Description

163,661 user number
529,615 tweet number
1,566,609 forward number

number of posts with respect to the number of users who
share or forward them (calculated by

∑

j
Gij for post pi).

We can see that all the four figures follow power law distri-
butions, which reflect that user behaviors are always very
sparse on social networks. Calculated with user number,
item number and adoption number, the density of Renren
dataset is 0.59%, and the density of Tencent Weibo dataset
is 0.09%. The sparsity problem is very serious in our case.

5.2 Experimental Settings
We design our experiments based on two user tasks [9]:

(1) annotation in context (2) find good items. The first task
requires the recommender to generate predictions for the
items that the user is reading. The second task requires a
more direct focus on actual recommendation and provides
users with a ranked list of recommended items, along with
predictions for how much the users would like them.

Different from those static held-out experiments on dataset-
s without time information, the recommendation on social
items, e.g. tweets, should be evaluated in a temporal set-
ting. For example, given an item and a user, the interper-
sonal influence that the user receives at t1 on the item may
be different from that the user receives at a later time t2, if
new friends (or followers) share (or retweet) the item during
the time t2 − t1. Moreover, as we do not have any informa-
tion about when the user is online, we can not decide which
items the user actually reads. Thus, here we use online ses-
sions to represent the time when the user is online, and we
suppose the user will read all the items received from his
relationships during the online session time. Given a user,
we randomly select a number of online session candidates
with the session width being 15 items. And we select the
candidates that include at least 2 adopted items as valid on-
line sessions. Then based on the valid online sessions, we
design the temporal social recommendation experiments as
shown in Figure 6. We arbitrarily select a time to divide
the dataset into the training and testing parts. Our model
learns interpersonal influence matrix and latent features of
users and items from the training set. Meanwhile, we gener-
ate valid online sessions from the testing set as testing cases.
Then we conduct all baseline algorithms and our method on
these test cases. Although the estimation of online session
cannot be guaranteed to be perfect, the experiment settings
are fair for all the comparative algorithms and the proposed
one. Thus, it is adequate to demonstrate the advantages
and characteristics of the methods.

5.3 Comparative Algorithms
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Figure 5: Characteristics of Renren (a)(b) and Ten-
cent Weibo (c)(d) Datasets

Figure 6: An Illustrator on Experiment Settings

We implement the following baselines for comparison with
our social contextual model (Context MF).

• Content-based [1]: This method recommends similar
items with ones that the receiver has shared or for-
warded before. It only uses adopted items’ content.

• Item CF [26]: The standard item-based collaborative
filtering assumes that users like what their close friend-
s or followers like. It only uses user-item interaction
information.

• FeedbackTrust [23]: This method improves the basic
trust-based recommendation algorithm [22] with users
feedback. It is accurate to compute users’ correlations
in trust network, but only interactions between users.

• Influence-based [10]: This method estimates influence
as social utility based on a gradient ascent algorithm.
It uses information of user interactions through items,
but fails to discover individual correlations between
users and items.

• SoRec [20]: This method jointly analyzes social net-
work data and user-item data by extracting a common
latent factor from the shared mode, using Probabilis-
tic Matrix Factorization. It does not take into account
influence from user interactions.

• SoReg [21]: This method designs a matrix factoriza-
tion objective function with Social Regularization to
constraint social recommendation. It considers tastes



of all the friends when estimates the user latent fea-
tures, but both user and item features should be regu-
larized with respect to individual preference on items.

Meanwhile, we implement different configurations of our
model to demonstrate the effectiveness of our proposed al-
gorithm.

• Influence MF: This method uses only one kind of so-
cial contextual factors (interpersonal influence) in our
social recommendation model. The adjusted function
to minimize is

J = ||R− SG⊤||2F + γ||S− F||2F + δ||S||2F (15)

• Preference MF: This method only uses individual pref-
erence for the matrix factorization model. The degen-
erated function is

J = ||R−U⊤V||2F + α||W −U⊤U||2F (16)

+β||C−V⊤V||2F + η||U||2F + λ||V||2F

5.4 Evaluation Measures
Error Metrics: To measure the prediction quality of

our proposed approach in comparison with other collabo-
rative filtering and matrix factorization algorithms, we use
two popular metrics, the Mean Absolute Error (MAE) and
the Root Mean Square Error (RMSE). The metrics MAE is
defined as

MAE =
1

|R|

∑

Rij∈R

|Rij − SiGj
⊤ ⊙Ui

⊤Vj| (17)

where Rij denotes the information adoption value (0 or 1)
given to j-th item by user ui. The metrics RMSE is defined
as

RMSE =

√

√

√

√

1

|R|

∑

Rij∈R

(Rij − SiGj
⊤ ⊙Ui

⊤Vj)
2 (18)

Therefore, a smaller MAE or RMSE value means a better
performance.

Precision on Top K Recommendation: Precision is
defined as the ratio of adopted items to number of item-
s recommended. Precision represents the probability that a
recommended item is adopted. Recommendation algorithms
are often evaluated by Precision@K [26], which is more im-
portant w.r.t. precision, because the recommendation space
is limited and only the top k recommended items make sense
in real recommendation applications. Here we range K value
from 2 to 10.

Ranking Coefficients: Compared to the absolute value
prediction accuracy, the predicted order accuracy is more
important in real recommendation scenarios. Here we use
two ranking-based evaluation methods to evaluate the per-
formance: Kendall’s ranking coefficient τ̂ and Spearman’s ρ̂.
They start by defining the following intuitive statistics: the
number of ranking order switches, which means how many
of the pairs in the test data are ordered incorrectly by the
model.

T =
∑

i<j

1(si > sj) (19)

The weighted sum of order switches, which weighs the in-
correct ordered pairs by the ranking difference:

R =
∑

i<j

(j − i) · 1(si > sj). (20)

These two measures are transformed linearly into the range
[-1,1], where 1 corresponds to perfect model performance
(T ,R = 0) and -1 corresponds to making all possible errors,
thus attaining perfect reverse ranking. Thus after we re-scale
T and R, we have the non-parametric correlation prevalent
data analysis tools:

τ̂ = 1−
4T

n(n− 1)
(21)

ρ̂ = 1−
12R

n(n− 1)(n+ 1)
(22)

T-test: An algorithm that gives higher probabilities on
adopted items than refused items will better help the rec-
ommender systems. In order to demonstrate the distinguish
ability, for each method, a group of T-tests are conducted
to compare numerical gaps between good recommendations
and bad ones. When T is higher, the classification is more
accurate on whether user adoption will happen or not.

5.5 Parameter Settings
Here we focus on parameter settings. We investigate the

performance when the parameters change, and implement
algorithms of our model and all baselines with these param-
eters.

Tradeoff Parameters: The tradeoff parameters α, β,
γ, δ, η and λ in our model play the role of adjusting the
strengths of different terms in the objective function Equa-
tion (11). To balance the components in this function, these
parameters are proportional to 1

||W−U⊤U||2
F

, 1
||C−V⊤V||2

F

,
1

||S−F||2
F

, 1
||S||2

F

and 1
||V||2

F

. Taking the scales of S, U, V, F,

W and C into account (Table 1 and 2), we scan orders of
magnitude and try different combinations of parameters as
shown in Table 3. We use the second row for Renren dataset
and the third row for Tencent Weibo dataset. Although they
are not the perfect ones, the following experiments demon-
strate they are adequate. We tune parameters following the
same way as Context MF for Preference MF and Influence
MF. We also find the best configurations while applying o-
riginal versions of competing methods on our real datasets
to make sure comparisons are fair.

Number of Hidden Features: We train U, V to find
the proper number of hidden features k for users and items.
If k is too small, the recommender system cannot make a
distinction between any users or items. If k is too large, users
and items will be too unique for the system to calculate their
similarities and the complexity will considerably increase.

Thus, we conduct experiments with k ranging from 3 to
80 on both Renren and Tencent Weibo datasets. The results
are shown in Figure 7, from which we can find that with the
hidden feature number k increasing, RMSE reduces gradu-
ally. It shows obviously that when k > 60 on both datasets,
RMSE decreases rather slow. Considering the recommen-
dation effect and time efficiency, we choose k = 60 as the
latent space dimension in our experiments.

Number of Iterations: In Figure 8, we can observe that
both RMSE and the objective function value J decrease



Table 3: Tradeoff Parameters on Renren (a) and
Tencent Weibo (b) Datasets (60 Hidden Features
and 60 Iterations)

α,η β γ,δ λ MAE RMSE

Renren Dataset

10−4 10−7 10−6 10−5 0.2452 0.3139

10−3 10−6 10−5 10−4 0.2416 0.3086

10−2 10−5 10−4 10−3 0.2431 0.3115

10−1 10−4 10−3 10−2 0.2676 0.3392

Tencent Weibo Dataset

10−3 10−6 10−5 10−4 0.1613 0.2529

10−2 10−5 10−4 10−3 0.1539 0.2432

10−1 10−4 10−3 10−2 0.1514 0.2348

1 10−3 10−2 10−1 0.1795 0.2767
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Figure 7: RMSE vs. Hidden Feature Number on
Renren (a) and Tencent Weibo (b) Datasets (60 It-
erations)

gradually with the number of iterations increasing. It shows
that, by incorporating effective regularizers, our method suc-
cessfully avoids the overfitting problem which often occurs
in gradient algorithms. On both datasets, it is better to run
60 iterations in order to reach a converged result with an
acceptable time cost.

5.6 Recommendation Performance
We evaluate each algorithm with the accuracy measured

as MAE, RMSE and ranking coefficients. As shown in Ta-
ble 4, our social contextual model, which recommends items
based on matrix factorization algorithm with social contex-
tual factors, provides reasonably accurate recommendations
that are much better than baselines. On Renren and Ten-
cent Weibo datasets, we decrease the prediction error by
19.1% and 12.8% on MAE, by 24.2% and 20.7% on RMSE
over SoReg, a state-of-the-art algorithm with social regular-
ization.

It should be noted that Preference MF and Influence MF
achieve better performance than SoRec, which demonstrates
the effectiveness of introducing either individual preference
or interpersonal influence. The large improvement margin
achieved by Context MF over both Preference MF and In-
fluence MF demonstrates the importance of incorporating
complete contextual information from both individual and
interpersonal sides for social recommendation. Moreover,
the fact that our proposed Context MF performs better than
SoReg proves the effectiveness of incorporating the two social
contextual factors from users’ motivations on item adoption,
instead of adding average-based or individual-based regular-
ization to user latent vectors [21].
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Figure 8: RMSE and Objective Function Value J
vs. Iteration Number on Renren (a)(b) and Tencent
Weibo (c)(d) Datasets (60 Hidden Features)

Table 4: Recommendation Performance on Renren
and Tencent Weibo Datasets

Method MAE RMSE τ̂ ρ̂

Renren Dataset

Content-based [1] 0.3842 0.4769 0.5409 0.5404
Item CF [26] 0.3601 0.4513 0.5896 0.5988

FeedbackTrust [23] 0.3764 0.4684 0.5433 0.5469
Influence-based [10] 0.3859 0.4686 0.5394 0.5446

SoRec [20] 0.3276 0.4127 0.6168 0.6204
SoReg [21] 0.2985 0.3537 0.7086 0.7140

Influence MF 0.3102 0.3771 0.6861 0.7006
Preference MF 0.3032 0.3762 0.6937 0.7036
Context MF 0.2416 0.3086 0.7782 0.7896

Tencent Weibo Dataset

Content-based [1] 0.2576 0.3643 0.7728 0.7777
Item CF [26] 0.2375 0.3372 0.7867 0.8049

FeedbackTrust [23] 0.2830 0.3887 0.7094 0.7115
Influence-based [10] 0.2651 0.3813 0.7163 0.7275

SoRec [20] 0.2256 0.3325 0.7973 0.8064
SoReg [21] 0.1997 0.2962 0.8390 0.8423

Influence MF 0.2183 0.3206 0.8179 0.8258
Preference MF 0.2111 0.3088 0.8384 0.8453
Context MF 0.1514 0.2348 0.8570 0.8685
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Figure 9: Top K Precision Curve on Renren (a) and Tencent Weibo (b) Datasets

We draw the precision curve on top K recommendation-
s in Figure 9. The performance increases regularly as we
decreases the size of recommended items. Compared with
baselines, our top 5 precision increases by 21.7% and top 10
precision increases by 10.8% on Renren dataset. The top 5
precision increases by 12.3% and top 10 precision increases
by 6.85% on Tencent Weibo dataset. The advantage of our
method is much more obvious when K is small. As the user
adoption behavior is very sparse, it is difficult to distinguish
excellent methods when K is rather large. That’s why al-
l the baseline algorithms tend to converge as K becomes
larger.

To compare the distinguish-ability of our method with
baselines, we report average and variance of prediction and
T-test results in Table 5. Our model gives the highest T
(1.78 and 1.26 times of the best baseline on Renren and
Tencent Weibo datasets), which shows the social contextu-
al model has better distinguish-ability compared with base-
lines.

We conduct 100 parameter-fixed experiments to test the
stability of our model with different random starts. As
shown in Table 6, the low variances of MAE and RMSE
(less than 0.001) show that our algorithm not only performs
well on both social networking and microblogging datasets,
but also runs without big fluctuation.

6. CONCLUSIONS
We conducted extensive experiments on two large real-

world social network datasets, and showed that social con-
textual information can greatly boost the performance of
recommendation on these social network data. In particu-
lar, we have gained increases of 24.2% and 20.7% in pre-
diction accuracy and 21.7% and 12.3% in recommendation
Precision@K upon previous approaches on these social net-
works, respectively. Also, the proposed algorithm is general
and can be easily adapted according to different real-world
recommendation scenarios.
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Table 5: T Statistics on Renren and Tencent Weibo
Datasets

Method Adopted Refused T-test

Renren Dataset

Content-based [1] 0.7019(0.046) 0.6653(0.052) 1.055
Item CF [26] 0.3596(0.001) 0.2679(0.001) 1.342

FeedbackTrust [23] 0.3632(0.082) 0.343(0.080) 1.060
Influence-based [10] 0.6413(0.004) 0.5898(0.004) 1.087

SoRec [20] 0.4733(0.010) 0.3465(0.003) 1.366
SoReg [21] 0.5234(0.012) 0.3356(0.007) 1.560

Influence MF 0.3505(0.015) 0.2131(0.006) 1.645
Preference MF 0.1324(0.028) 0.0555(0.015) 2.384
Context MF 0.4556(0.095) 0.1074(0.019) 4.244

Tencent Weibo Dataset

Content-based 0.4173(0.048) 0.2764(0.029) 1.509
Item CF 0.6374(0.004) 0.2436(0.001) 2.617

FeedbackTrust 0.7920(0.019) 0.6096(0.009) 1.299
Influence-based 0.8004(0.019) 0.3918(0.007) 2.043

SoRec 0.4949(0.004) 0.0580(0.004) 8.532
SoReg 0.5523(0.003) 0.0602(0.006) 9.1744

Influence MF 0.5222(0.012) 0.0620(0.005) 8.423
Preference MF 0.5758(0.015) 0.0517(0.001) 11.13
Context MF 0.8115(0.020) 0.0580(0.001) 13.99

Table 6: Stability of Performance on Renren and
Tencent Weibo Datasets (60 Hidden Features and
60 Iterations)

Renren Dataset
MAE RMSE τ̂ ρ̂ T

x 0.2416 0.3086 0.7783 0.7897 4.2437
σ 0.0001 0.0001 0.0006 0.0006 0.5545

Tencent Dataset
MAE RMSE τ̂ ρ̂ T

x 0.1514 0.2348 0.8571 0.8686 13.989
σ 0.0001 0.0002 0.0002 0.0001 1.8962



Tsinghua-Tencent Joint Lab for Internet Innovation Tech-
nologies.

8. REFERENCES
[1] M. Balabanovic and Y. Shoham. Fab: content-based,

collaborative recommendation. Communications of the
ACM, 40:66–72, March 1997.

[2] A. Bandura. Social cognitive theory of mass
communication. Media Psychology, 2001.

[3] L. S. Benjamin. Structural analysis of social behavior.
Psychological Review, 1974.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, March 2003.

[5] R. Bond and P. B. Smith. Culture and conformity: a
meta-analysis of studies using asch’s (1952b, 1956) line
judgment task. Psychological Bulletin, 119:111–137,
January 1996.

[6] Y. Chen and J. Canny. Recommending ephemeral
items at web scale. In Proceedings of the 34th
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR),
pages 1013–1022, 2011.

[7] P. Cui, F. Wang, S. Liu, M. Ou, S. Yang, and L. Sun.
Who should share what? item-level social influence
prediction for users and posts ranking. In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), pages 185–194, 2011.

[8] M. Harvey, M. J. Carman, I. Ruthven, and
F. Crestani. Bayesian latent variable models for
collaborative item rating prediction. In Proceedings of
CIKM, pages 699–708, 2011.

[9] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems (TOIS), 22:5–53, January 2004.

[10] J. Huang, X. Cheng, J. Guo, H. Shen, and K. Yang.
Social recommendation with interpersonal influence.
In Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI), pages 601–606, 2010.

[11] M. Jamali and M. Ester. Trustwalker: a random walk
model for combining trust-based and item-based
recommendation. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 397–406,
2009.

[12] D. Kong, C. Ding, and H. Huang. Robust nonnegative
matrix factorization using l21-norm. In Proceedings of
CIKM, pages 673–682, 2011.

[13] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 426–434, 2008.

[14] Y. Koren. Collaborative filtering with temporal
dynamics. In Proceeding of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 2009.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42:30–37, 2009.

[16] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of
influence in a recommendation network. Lecture Notes
in Computer Science, 3918:380–389, 2006.

[17] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining
topic-level influence in heterogeneous networks. In
Proceedings of CIKM, pages 199–208, 2010.

[18] N. N. Liu, M. Zhao, and Q. Yang. Probabilistic latent
preference analysis for collaborative filtering. In
Proceedings of CIKM, pages 759–766, 2009.

[19] Q. Liu, E. Chen, H. Xiong, C. Ding, and J. Chen.
Enhancing collaborative filtering by user interest
expansion via personalized ranking. IEEE
Transactions on Systems, Man, and Cybernetics -
Part B (TSMCB), 42(1):218–233, February 2012.

[20] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: Social
recommendation using probabilistic matrix
factorization. In Proceedings of CIKM, pages 931–940,
2008.

[21] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender system with social regularization. In
Proceedings of the 4th ACM International Conference
on Web Search and Data Mining (WSDM), pages
287–296, 2011.

[22] P. Massa and P. Avesani. Trust-aware recommender
systems. In Proceedings of the 2007 ACM Conference
on Recommender Systems (RecSys), 2007.

[23] S. Moghaddam, M. Jamali, M. Ester, and J. Habibi.
Feedbacktrust: using feedback effects in trust-based
recommendation systems. In Proceedings of the 3rd
ACM Conference on Recommender Systems (RecSys),
pages 269–272, 2009.

[24] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. Neural Information Processing Systems
(NIPS), 2007.

[25] M. J. Salganik. Experimental study of inequality and
unpredictability in an artificial cultural market.
Science, 311:854–856, 2006.

[26] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th International
Conference on World Wide Web (WWW), pages
285–295, 2001.

[27] L. Si and R. Jin. Unified filtering by combining
collaborative filtering and content-based filtering via
mixture model and exponential model. In Proceedings
of CIKM, pages 156–157, 2004.

[28] M. E. Tipping and C. M. Bishop. Probabilistic
principal component analysis. Journal of the Royal
Statistical Society, Series B, 61:611–622, 1999.

[29] F. Wang, H. Tong, and C.-Y. Lin. Towards
evolutionary nonnegative matrix factorization. In
Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI), pages 501–506, 2011.

[30] S.-H. Yang, B. Long, A. Smola, N. Sadagopan,
Z. Zheng, and H. Zha. Like like alike: joint friendship
and interest propagation in social networks. In
Proceedings of the 20th International Conference on
World Wide Web (WWW), 2011.


