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Social Dynamics

Social dynamics: the behavior of groups that results from
the interactions of individual aroup members
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Social Dynamics Phenomena
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Social Dynamics Phenomena

Social Network Growth Dynamics



Social Dynamics Phenomena

Information Spreading




Social Dynamics Phenomena

Traffic Jam Diffusion
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Why Dynamics ?

Social phenomena are intrinsically dynamic.

Without dynamics, you lack a dimension to observe
patterns.

Dynamics can tell you why it looks like this.

Dynamics can tell you what it will look like.
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Social D ynamics Bring Challenges

Predictive Model

A Black Box
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A Difficult to featurize social dynamics
A Difficult to apply classical ML methods
A Difficult to get interpretable insights



How to study social dynamics?

What about the predicting
power of the proposed
model?

What patterns exist in the
complex social dynamics?

Understanding Modeling Predicting

How to design a simple but
realistic model to interpret
(or fit) the observed patterns?




How to study social dynamics?

Statistical Data-Driven

Physics Approach

Understanding Modeling Predicting




Three Exemplary Works

A Social network growth patterns and prediction
A Social group growth patterns and prediction

A Information cascading process prediction problem
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Growth Phenomenon
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Problem: How do n(t) and e(t) grow over
time?

A n(t): the number of nodes.

A e(t): the number of edges.

AE.Q.:

u How many members will 3 have next
month?

i How many friendship links will %> have next
year?



Past assumptions on n(t)

A n(t): the number of nodes.

A Past assumptions:
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Past assumptions on e(t)

A e(t): the number of edges.

A Past assumptions:
u Few.



Big-Data-Driven

AWeChat 2011/122013/1 300M nodes, 4.75B links
A ArXiv 1992/3 -2002/3 17k nodes, 2.4M links
AEnron 1998/1 -2002/7 86K nodes, 600K links
AWeibo 2006 165K nodes 1 331K links

Largest SN dataset!




Findings: Power Law Growth
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