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Abstract

Feature analysis is the extraction and comparison of signal from multimedia
data, which can subsequently be semantically analyzed. Feare analysis is
the foundation of many multimedia computing tasks such as olpect recognition,
image annotation, and multimedia information retrieval. | n recent decades, con-
siderable work has been devoted to the research of feature alysis. In this work,
we use large-scale datasets to conduct a comparative studyf four state-of-the-
art, representative feature extraction algorithms: colortexture codebook (CT),
SIFT codebook, HMAX, and convolutional networks (ConvNet). Our compar-
ative evaluation demonstrates that di erent feature extra ction algorithms enjoy
their own advantages, and excel in di erent image categoris. We provide key
observations to explain where these algorithms excel and wh Based on these
observations, we recommend feature extraction principlesand identify several
pitfalls for researchers and practitioners to avoid. Furthermore, we determine
that in a large training dataset with more than 10;000 instances per image
category, the four evaluated algorithms can converge to thesame high level
of category-prediction accuracy. This result supports thee ectiveness of the
data-driven approach. Finally, based on learned clues fromeach algorithm's
confusion matrix, we devise a fusion algorithm to harvest spergies between
these four algorithms and further improve class-predictim accuracy.
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1. Introduction

Extracting useful features from a scene is an essential subutine in many mul-
timedia data analysis tasks such as classi cation and retgval. Remarkable
progress has been made in multimedia computing, computer 8ion and signal
processing in recent decades. Despite this nding, it is sti notably di cult
for computers to accurately recognize an object or analyzehe semantics of a
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scene. For example, suppose that we want to recognize a pieoé white paper
in an image. A naive feature we can use is \a white two dimensioal rectangle."
However, such a feature will not work in most cases because tie following:

1. The paper may be folded.

2. The viewing angle of the piece of paper may not perpendical, and hence
the paper does not appear to be rectangular.

3. Environmental factors such as occlusion and lighting carcause changes in
its shape and color.

The above challenges are all related tdfeature invariance issues. A second
challenge is calledfeature aliasing or feature selectivity. how well a feature can
di erentiate one object from the others. For example, the feature \white two-
dimensional rectangle” can be used to describe many other gécts: a piece of
white cloth, a white table, and a white wall, among others. The goal of feature
extraction is to nd features that are both invariant and selective

All traditional feature extraction approaches focus on sone speci c information
in the image. For example, the color-texture codebook (CT) bcuses on the
statistics of colors and textures in small regions of an imag. SIFT focuses on
local invariant shapes. Recently, neuro-based approachesuch as HMAX and
convolution networks (ConvNet) have been proposed to modeleatures accord-
ing to how the human visual system extracts features. HMAX [4] builds com-
puting models that use the pioneering neuroscience work of tibel [22]. Hubel's
work indicates that visual information is transmitted from the primary visual
cortex (V1) through extrastriate visual areas (V2 and V4) to the inferotemporal
cortex (IT). The IT, in turn, is a major source of input to the p refrontal cortex
(PFC), which is involved in linking perception to memory and action [33]. The
pathway from the V1 to the IT (called the visual frontend) consists of a number
of simple (lower) and complex (higher) layers. The lower lagrs attain simple
features that are invariant to scale, position and orientation at the pixel level.
Higher layers can combine simple features to recognize mowmplex features
at the object-part level. Pattern recognition at the lower layers is unsupervised,
whereas recognition at the higher layers involves supervel learning. This par-
ticular neuroscience-motivated model appears to enjoy atdast a couple of ad-
vantages: (1) it balances feature selectivity (at lower layrs) and invariance (at
higher layers), and (2) it models edges of an object and thenambines edges to
recognize parts of an object and place these features in a méchical context.
Similar to HMAX, ConvNet is also a neuro-based approach. It ders from
HMAX primarily in the way that ConvNet iterates more over the data to learn
a model with a deep architecture [39]. This allows for the capure of both the
structure and detail of an object.

Herein, we perform comparative evaluation that demonstraes that di erent fea-
ture extraction algorithms have their own set of advantagesand excel in di erent
image categories. We provide key observations about why ctin algorithms
perform better with di erent image categories. Based on these observations, we



establish feature extraction principles and identify seveal pitfalls for researchers
and practitioners to avoid:

1. When training data are insu cient, no scheme performs wel. However,
because simple algorithms such as CT and SIFT do not require octh data
to learn model parameters, they may be a better choice when #ining data
are scarce.

2. Increases in the amount of training data correlate with a pmp in the
accuracy of complex models, such as HMAX and ConvNet. Di erat
feature extraction algorithms enjoy their own advantages, and excel in
di erent image categories.

3. When training data are abundant, all the four algorithms, simple or com-
plex, converge to the same level of accuracy.

The major contributions of this paper are summarized as folbws:

1. Through our comparative analysis, we identify pitfalls of past studies:
either they did not use enough training data, or their testbed composition
already favors a particular feature extraction algorithm.

2. Through our large-scale comparative study, we demonstite the bene t of
employing large training datasets in training, which can make both simple
and complex algorithms converge to the same level of accurgc

3. We devise a fusion algorithm based on learned clues from @aalgorithm's
confusion matrix. Our algorithm harvests synergies betweer these four
algorithms and further improves class-prediction accurag.

4. We established a large testbed for the research communitynamely an
annotated dataset of six million PicasaWeb images, which Wi be released
publicly with this paper. *

The rest of the paper is organized as follows. Section 2 surys the related work.
Section 3 brie y introduces the four feature extraction algorithms evaluated in
this paper. Section 4 details an algorithm that fuses multide feature extraction
methods that we demonstrate can perform better than any indvidual feature
extraction scheme alone. Section 5 explains the setup of owxperiments and
presents their results. Finally, we o er concluding remarks in Section 6.

2. Related Work

The multimedia community has been striving to bridge the semantic gap[20,
46, 62] between low-level features and high-level semanidor decades. (Com-
prehensive surveys are given in [5, 20].) With high-qualityimage features, fancy
applications can signi cantly improve a user's experience[9, 11, 30]. One key

1Downloads at https:/sites.google.com/site/picasawebdataset/home



problem is how to extract powerful features. Numerous featue extraction al-

gorithms have been developed for image annotation [46], aselN as machine
learning algorithms [14, 36, 59, 60, 61]. Roughly speakingmage features can
be grouped into four types: color, texture, local features,and shapes. Color
features are the most straightforward image feature and theefore were the rst

to receive su cient study. Many color-based image retrieval algorithms have

been developed [18]. Typical color features include the cot histogram [19],

color invariance [17], and color saliency [51]. Texture feares, such as local
binary patterns (LBP) [34], pyramidal-structured wavelet transforms [37], and

tree-structured wavelet transform [8], are another signi cant set of signals for
recognizing objects. Color and texture features are usuall combined to solve
image retrieval problems. Color-texture histograms are wilely used for object
tracking and recognition. After a decade of using color and éxture as the

main features for an image, a breakthrough came with the scatinvariant fea-

ture transform (SIFT) [32]. SIFT was a large step forward for extracting scale-

invariant features. SIFT features are local features, and hve been demonstrated
to be e ective in detecting near-replicas of images. SIFT ha often been com-
bined with unsupervised learning algorithms to solve multple image processing
problems. Recently, Y. Bengio [2] proved that it is theoretically impossible to

represent some functions by architectures that are too sh&w. In response
to this nding, researchers learned from neuroscientists bw the human visual

system works [22], and it has been proven to be a deep architere. Since Hin-

ton's work in 2006 [21], deep models have been developed wijood results. The
earliest deep architectures include self-organizing neat networks [15] and the
predecessor of the convolutional network (ConvNet), whichis applied in docu-

ment recognition [28]. For natural image processing, one athe representative

works is HMAX [45], which strikes a good balance between featre selectivity

and feature invariance. Furthermore, ConvNet [39] was intoduced to establish a
deep unsupervised learning architecture to learn powerfufeatures. These deep
learning features are based on edge detection and thus focus the shapes of
objects. Because our evaluation covers color, texture, l@t feature and shape,
the conclusions that we draw hold for any subset of these conbations.

Though many comparative studies on features have been penfimed in the past,
they generally su er from a couple of limitations. First, mo st studies employ a
relatively small training dataset; this results in better f eature extraction algo-
rithms not having the opportunity to demonstrate their supe riority with training
data increases. Second, some comparative studies' resulise highly dependent
on the makeup of the testbed. If categories of images favorgna particular al-
gorithm dominate a testbed, that algorithm certainly achieves the best result.
Unfortunately, most studies do not pay attention to these two limitations, which
results in their conclusions having limited applicability. More importantly, we
focus on studying representative state-of-the-art algothms using large datasets.
Our dataset size is much larger than that used in previous atempts (e.g., [13])
for data-driven image classi cation [42, 63].

Because di erent feature extraction algorithms have di erent advantages in dif-



ferent scenarios, it is a natural consideration to integrat di erent methods
together to overcome any drawbacks from one individual metbd that may be
an advantage to another [1, 56]. This fusion of methods lead® enhanced nal
performance. There are various ways to combine multiple algrithms. These
traditional schemes aim to improve class-prediction accuacy by applying sta-
tistical learning to the same set of features. In our work, wepay attention to
employing di erent features, i.e., di erent views provided by di erent feature-
extraction algorithms. Our fusion method uses a confusion ratrix to guide the
choice of the best feature sets (views) into the raw images @ahthen makes a
collective class-prediction decision. Our approach dies from the traditional
ensemble schemes in two respects. First, most traditionalulsion schemes com-
bine several feature sets into a single one and then use a ststical algorithm to
learn the best feature combination [10]. Second, most ensdite schemes work
on the same feature space and use statistical methods to magkediction error.
Our approach builds on these schemes and emphasizes that wake advantage
of both multiple feature and statistical methods to reduce prediction error.

In general, ensemble methods can be classi ed into two grouwg feature-level
and decision-level The rst group pays focuses on combining features. When
there are multiple feature sets, one of the most straightfoward ways to com-
bine features is to fuse on the feature-level. Algorithms ofthis type include
stitching features together to create a super feature set B and constructing a
classi er from the super feature set in conjunction with sone learned cost [52].
Giridharan et al. proposed a discriminative approach to fuson of multimodal
features of a video [23]. Wang et al. proposed a smart approhcto fusion of
multiple visual features in a graph-based learning scheme5B, 54]. However,
these methods may encounter the curse of dimensionality oré con ned by a
feature-dependent structure [57], which is hard to generdte to dierent fea-
ture sets. The second group, decision-level fusion [38], B good method to
avoid the curse of dimensionality. Decision-level fusion @ be implemented
by either voting or constructing features with meta-classier results. For in-
stance, pairwise coupling, tree-structure ensemble, andreor-correction output
coding [41] all attempt to work on the same feature set (the sme feature space)
with robust statistical methods to minimize class-prediction error. Feature-level
fusion and decision-level fusion have also been compareding video datasets,
and the performance is related to semantic concepts [48]. lrontrast to the
feature-level and decision-level approaches, our fusione@thod conducts statisti-
cal inference on multiple views (through di erent features generated by di erent
algorithms) of the raw images. As each view enjoys its own pr® and cons, we
employ confusion matrices to guide the class-prediction pycess through the least
inter-class-confusion inference path. This approach not nly avoids the curse of
dimensionality as in feature-level ensemble application bt also displays a supe-
rior before to decision-level methods by using advantagesdm di erent feature
extraction algorithms.
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Figure 1: A framework of image classi cation including four pathways.

3. Feature Extraction Algorithms

In this section, we present four representative algorithmsfor image feature ex-
traction: color-texture codebook (CT) SIFT codebook HMAX , and Convolution
Networks (ConvNet). Figure 1 depicts a framework that consists of these four
algorithms. The input to the framework is a set of images. After extracting
descriptors such as color-texture histograms, SIFT descptors, HMAX edges,
and ConvNet's encoding results, the framework conducts annsupervised learn-
ing stage to learn codebooks or patch pools. Then, by matchiop the low-level
descriptors to the codebooks/patches, the nal output of each algorithm can
be directly applied as the input to a supervised learning mahine. This su-
pervised learning machine performs class prediction for eh input image. To
facilitate further analysis of these four feature extraction algorithms, we outline
color-texture codebook in Section 3.1, SIFT codebook in S¢éion 3.2, HMAX in
section 3.3, and ConvNet in Section 3.4.

Descriptions of the variables throughout this work are given in Table 1. We use
bold characters for matrices and vectors and plain charactes for values.

3.1. Color-Texture Codebook

In the color-texture (CT) codebook algorithm, images are claracterized by three
perceptual features: color, texture, and shape. These peeptual features are



Table 1: Variable de nitions.

Variable | Explanation
I the image data
Gauss(x;y; ) | Gaussian value at some point
L(x;y; ) Gaussian blurred value at some point
D(x;y; ) di erence of Gaussian at some point
Dyx;Dyy;Dyy | partial di of D
m(x;y) gradient magnitude
(x;y) orientation
tth, Tth thresholds for parameters
l'th thresholds for parameters
I's_edge edge selection result
I edge edge extraction result
P a patch
I's_part part selection result
Vpart part extraction result
Fc Iter for convolution layer
C output of a convolution layer
h Sigmoid function
V convnet ConvNet feature
A confusion matrix
Aj value of confusion matrix at i,j
X features for training data
A labels for training data
XV features for validating data
YV labels for validating data
Xt features for testing data
Y ®© labels for testing data
Gif group for feature f , category i

considered to be low-level descriptors of small image regis (also called blocks).
The higher-layer feature-to-object mappings require a leening or clustering pro-
cess. There have been many proposed methods to represent@oltexture, and
shape. What we describe in this subsection is a typical methad that has been
demonstrated to be competitive in this representation famly [50].

3.1.1. Color Feature Extraction

Although the wavelength of visible light ranges from 400 nammeters to 700
nanometers, research e ort shows that the colors that can benamed by all
cultures are generally limited to eleven [6]. In addition to black and white,
the discernible colors arered, yellow, green blue brown, purple, pink, orange
and gray. Thus, the color-texture codebook algorithm rst divides colors into
12 color bins: 11 bins for the above colors and one bin for ou#rs. At the



coarsest resolution, we characterized color using a color ask of 12 bits. To
record color information at ner resolutions, we record eight additional features
for each color. These eight features are color histograms,otor means (in H,
S, and V channels), color variances (in H, S, and V channels)and two shape
characteristics: elongation and spread. Color elongatiowharacterizes the shape
of a color, and spread characterizes how that color scattenwithin the image [29].
We categorize color features in coarse, medium and ne resations.

3.1.2. Texture Feature Extraction

Texture is an important cue for image analysis. Studies havedemonstrated
that characterizing texture features in terms of structure, orientation, and scale
(coarseness) ts well with models of human perception [35].A wide variety of
texture analysis methods has been proposed in the past. We ole a discrete
wavelet transformation (DWT) using quadrature mirror Ite rs [47] because of
its computational e ciency.

Each wavelet decomposition of a 2D image yields four subimass: a% %

scaled-down image of the input image and its wavelets in thre orientations:

horizontal, vertical and diagonal. Decomposing the scaledlown image further,

we obtain a tree-structured or wavelet packet decompositin. The wavelet im-

age decomposition provides a representation that is easy tinterpret. Every

subimage contains information on a speci ¢ scale and orierition and also re-
tains spatial information. We obtain nine texture combinations from subimages
of three scales and three orientations. Because each subige retains the spa-
tial information of texture, the CT algorithm also computes the elongation and
spread of each texture channel. For further details, pleaseonsult [25, 50].

3.1.3. Color-Texture Codebook Construction

Many researchers suggest the addition of an unsupervisedyar between raw
features and semantics. Thebag of words(also known asbag of feature$ is one
widely used model and is suitable for clustering color and teture histograms
into a codebook [25] to reduce feature dimension.

3.2. SIFT Codebook

A SIFT [31] feature is a typical designed feature that is robist against orien-
tation, scale and location variance of an image. To apply SIF features to
image classi cation, one needs rst to extract SIFT descriptors and then clus-
ter those descriptors into a codebook [4, 24]. With the codebok, a feature of
xed length can be extracted that meets the input requirement of a supervised
learning algorithm.

3.2.1. SIFT Descriptor Extraction

Four principle stages are conducted to extract invariant SFT descriptors.



Scale-space Extrema Detection.A Di erence-of-Gaussian (DoG) function is used
to e ciently search the image on all scales and locations forinteresting points or
keypoints. Keypoints are identi ed as local minima/maxima of the DoG images
across scales. A DoG image at pointx;y) is given by

D(x;y; )= Lxyk ) Ly ) 1)

where L(x;y;k ) is calculated by the convolution of the original image and a
Gaussion blur at scalek , i.e.,

L(x;y;k )= Gauss(x;y;k ) 1(X;y) (2)

and

Gauss(x;y; )= e (Fryh=2 2. ()

2 2

wherek is a constant multiplicative factor.

Keypoint Localization. For each candidate location of key points, location and
scale information are determined using a detailed model. Oy stable key points

are kept. The strategies that determine stability include the interpolation

of nearby locations for accurate position, the elimination of low-contrast key
points, and the removal of edge responses. The quadratic Téyr expansion of
the Di erence-of-Gaussian scale-space function is givenyb

@Ijx+ }XT@X; (4)
@ 27 @2

wherex = (x;y; ). If the o set between the local maxima and this point is too
large, it is assumed that this local maxima is closer to anotler key point. Oth-
erwise, if the second-order of the Taylor expansion is lesfiain a given threshold,
the point is discarded.

D(x)= D +

If we analyze the second-order Hessian matrix

D D
H = XX Xy (5)
DXy Dyy
we can calculateTr(H) = Dy +Dyy = + andDet(H)= Dy Dyy (ny)2 =
. By solving for and and ensuringj j > j j, we can calculater = =
If (r +1)%=r> (ry +1)2=ry,, the point is discarded because of edge e ects.

Orientation Assignment. Each keypoint is assigned with one or more orienta-
tions based on local image gradient directions. The invariace of orientation,
scale, and location is guaranteed because all operations erelative to these



transformations. The Gaussian-smoothed imagd.(x;y; ) is taken so that all
computations are scale-invariant in nature. For an image senple L(x;y) at
scale , the gradient magnitude m(x;y) and orientation (x;y) are given by
equations 6 and 7, respectively, wheré,., is the same asL(x +1;y).

p
m;y) = (Lxs1y Lx 1y)2+(Lxysr  Lxy 1)2 (6)

L(x;y+1) L(xy 1)) )

. — 1
(xiy) = tan (L(X+1:y) L(x Ly)

Keypoint Descriptor. Around each keypoint, local image gradients are mea-
sured. Shape distortion and change in illumination are invaiant here. Orienta-
tion histograms are created in 4 4 pixel neighborhoods with each pixel having 8
bins, so the descriptor has a dimension of 128. The vector isaimalized to unit
length to enhance invariance to a ne changes in illumination. Four principle
stages are conducted to extract invariant SIFT descriptors For further details,
please consult [31, 32].

3.2.2. SIFT Codebook Construction

Because each image has various numbers of interesting pogtand thus have
di erent stable SIFT features, we need to normalize the featire length when we
classify images. A typical way to do this is to cluster desciptors into several
representative centers, and then use those centers to measuthe image instead
of a direct comparison of SIFT descriptors.

3.2.3. SIFT Feature Extraction

When classifying images, one must rst explore a large popwtion of images
and extract their SIFT descriptors. The SIFT descriptors are then clustered
into a codebook, which is the state-of-the-art conversion lorithm for applying

SIFT to obtain high level abstracted features [24]. After canpleting a codebook,
features can be extracted from new images by matching their BT descriptors
to corresponding entries in the codebook.

3.3. HMAX

The HMAX [45] algorithm is depicted in Figure 2. The gure shows that visual
information is transmitted from the primary visual cortex ( V1) through the
extrastriate visual areas of the brain (V2 and V4) and then to the inferotemporal
cortex (IT). Physiological evidence indicates that the cels in V1 largely conduct
selectionoperations, and cells in V2 and V4 conductpooling operations. Based
on this, M. Riesenhuber and T. Poggio establish a feed-forwa theory of object
recognition [40] that provides a qualitative way to model the ventral stream
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CIT = central IT

AIT = anterior IT

Figure 2: Information ow in the visual cortex. (See the brain structure in [58].)

in the visual cortex. Their model suggests that the visual pahway consists
of multiple layers of computational units where simple Sunits alternate with
complex Cunits. The S units address signal selectivity, whereas theC units
address invariance. Lower layers recognize features thatra invariant to scale,
position, and orientation at the pixel level. Higher layers detect features at the
object-part level from the combination of lower layer features. Pattern reading
at the lower layers is largely unsupervised, in contrast to ecognition at the
higher layers, which involves supervised models.

Motivated by both physiological evidence [45] and computaional learning the-
ories, the HMAX pipeline consists of ve steps:

Edge selection Edge selection corresponds to the operation conducted byeds
in V1 and V2 [27], which detect edge signals at the pixel level

Edge pooling Edge pooling also corresponds to cells in V1 and V2. The
primary operation is to pool strong, representative edge gjnals using amax
operator.

Unsupervised Learning To prevent too many features, which can lead to the
dimensionality curse, or too shallow architecture, which nay lead to trivial so-
lutions, this unsupervised steps groups edges into patchde make the patches
both representative of shapes and without duplication.

Part selection. We model V2 to V4 step to look for image patches matching
prototypes (patches) produced in the previous step.

Part pooling. Cells in V4 [16] have larger receptive elds than V1 and ad-
dress object-parts. Because of their large receptive eldsV4's selectivity is
preserved over translation.

For further details about HMAX details, please consult Serre's thesis [44].

11



3.4. Convolutional Networks

Convolutional networks [28] combine local receptive elds shared weights and
spatial or temporal sub-sampling to ensure shift, scale andistortion invari-
ance. Convolutional networks are widely used in multiple inage processing and
machine learning tasks [43]. The input image is alternativéy processed with
convolutional layers and sub-sampling layers to obtain fetures. Convolutional
layers and sub-sampling layers are similar to theedge selectiorand edge pooling
steps of HMAX. Indeed, the ConvNet algorithm was inspired by neuroscience.
With deep neural learning of multiple iterations, the output converges to one
pixel for each set of parameters. Each of these one-pixel was of the nal layer
can be stitched together to form the nal feature vector, which can then be ap-
plied directly as the input of a supervised learning algorihm. ConvNet learns
patches for the convolutional layer, which is similar to the function of patches
in HMAX. However, while HMAX picks patches randomly from the training
data to obtain a uniform distribution from all training data , ConvNet attempts
to learn the most informative patches for higher e ciency, which is the major
di erence between the two algorithms.

3.4.1. Convolutional Layer

Several weight matrices are trained so that each matrix conelves with the image
to extract various features. Each weight matrix is a 5 5 matrix that connects
every 25 pixel block in the input image. This operation is a 2D convolution:
C=1 Fc.

3.4.2. Sub-sampling Layer

Each unit of the sub-sampling layer is connected to a 2 2 neighborhood in
the corresponding feature map in the convolutional layer. These four inputs
are added together, multiplied by a trainable coe cient, and then added to a
trainable bias. The results of the convolutional layer are hen passed through
a sigmoidal function. Because the 2 2 receptive elds do not overlap, feature
maps in the sub-sampling layer are one-fourth of the area oftte feature maps
in the corresponding convolutional layer.

3.4.3. Deep Learning and Learning from Data

Convolutional layers and sub-sampling layers alternate pocessing of the image
with di erent weights. The convolutional layer will ignore boundary values and
thus reduce the data scale by several pixels in both width andheight. The

sub-sampling layer will reduce the data to one fourth of the aiginal size. Thus,

if we continuously apply convolutional layer and sub-samping layer processing
with the data to construct a deep learning architecture, the scale of the data
can reduce to a single value.

There are multiple weights provided to the convolutional layer, so the nal
output is a vector. A deep learning procedure can convert themage into a vector

12



with multiple weights. The weights in ConvNet can all be leamed from multiple
iterations of feature extraction. With an updating stage in each iteration, the
weights can be learned from the data [3], and the feature beeones better and
better. For further details about convolutional networks, please consult [28, 39]

4. Fusion

The four feature-extraction algorithms produce features vith di erent advan-
tages and drawbacks. In this section, we outline a fusion algrithm to harvest
synergies between these four algorithms to further improvelass-prediction accu-
racy. This fusion algorithm not only takes advantages of mutiple image features
but also avoids the curse of dimensionality. More preciselywith each feature
set, a classi er can be constructed to perform class prediégn. By constructing
a confusion matrix (de ned shortly) for a feature set, we can learn whether the
classi er can provide a reliable class-prediction for an utabeled instance. If the
confusion matrix, which is trained by a validation data set, indicates that the
predicted top class (say, yellow bus) was often misclassi@ into another class
(say, yellow bulldozer), then the class prediction should ot be fully trusted. In-
stead, we should look for assistance from any classi ers thiare not confused by
the two classes to perform disambiguation. In other words, ar fusion method
provides a result if one of the classi ers produces a highly @n dent prediction.
If con dence is low, we can check the confusion matrix for thepossible confusion
set and make use of other classi ers to help further judge theprediction, so the
results can be more reliable. The overall procedure is presged in Figure 4.
The details are provided in the following paragraphs.

4.1. Data Preparing

The fusion algorithm rst uses the training data to train ind ividual SVM clas-
si ers on each feature set produced by the four feature-extction algorithms.
Figure 4 presents this data-preparing stage from steps #1 to#3, whose input
and output are de ned as in Figure 3

4.2. Confusion Matrix

A confusion matrix is an M M matrix showing the predicted and actual
classi cations [26], whereM is the number of categories. The confusion matrix
is denoted by A, where A stands for the probability that the actual label i

is predicted as labelj. By predicting the validating data, the confusion matrix

can be constructed by counting the number of pairs of predictd labels and
actual labels. We normalize the confusion matrix by the sum éeach row of the
matrix so that 8i;j;A j 2 [0;1]. A simple example of a confusion matrix and its
normalization is in Table 2. A confusion matrix is constructed by counting the
number of pairs of predicted labels and actual labels as in ta left table, e.g., the
third value on the second row indicates that there are four irstances predicted
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Input: M // # of categories
D /I the length of a feature vector
/I threshold to cut the gap
F // feature set fCT, SIFT, HMAX, ConvNet ¢
N NV;N® //# of training/validating/testing instances
f(xtr;f ;ytr )jxtr;f 2 xtf ;ytr 2yt f 2 F:
xtf 2 RN" Doyt 2fyii2 [0:M  1)ggM "
/[ training data with label
(VT yv)jxvit 2 XV oyv 2 YVif 2 F;
XVvi 2 RNY Doyvofyiji2[o;M  1ggN’)
/ validating data with label
f xteif jxte;f 2 X teif ;xte;f 2 RNte Djf 2 Fg
/I testing data without label
wi;wz; w3z // weights for selecting top classi er
Output: ¥ 2fyiji2[0;M 1]V o predicted labels for testing data

Figure 3: Input and Output of Fusion

Table 2: A simple example of confusion matrix.

Category | Predicted Category Predicted

Actural | 1]2] 3 Actural 1] 273
1 8|11 1 0.8|01]01
2 0|64 2 0 |06]04
3 114]5 3 0.1/04]|05

as category 3, but actually, they are category 2. Computing he sum of each row
and normalizing each value by the row sum, the normalized cofiusion matrix
is in the right table. Figure 4 presents the confusion matrix construction from
steps #4 to #16.

4.3. Confusion Groups

An analysis of the confusion matrix shows that each algorittm encounters dif-
ferent confused category sets. For instance, the CT algoritm cannot tell the
di erence between acomputer keyboardand calculator. The SIFT algorithm

confuses aschool busand a bulldozer When a labeli is predicted, the possi-
bility of the actual label being j is marked in the confusion matrix Aji . By
sorting f A;; jj g in descending order, we obtain the top possible labels by ctihg

o the tail at a large gap location, i.e., disregard all values starting at the rst

jowhereAjo i Ajoj < , where is the cutting o threshold. In addition,

the selected label should have a probability larger than £M, or else a random
selection would outperform it. A group Gif is constructed by collecting these
top possible labels. Refer again to Table 2 as an example. Ihe category 3
is predicted by this classi er, and = 0:15, the sorting will provide the order
0:5;0:4;0:1 in the column. Because &6 0:4 < 0:15 but 0:4 0:1 > 0:15 (or
because @l < 1=M, M = 3), we keep 05 and 04 but discard 0:1 and the later
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Initialize:
1: forall f 2 Fdo

2:

¢ SVM(X™ .y '™) J/train SVM classier

3: end for
Compute confusion matrix:
4: forall f 2 Fdo

5 Af 0 // confusion matrix set to zero

6: foral xVf 2 xVf do

7: pvif ¢ (xVT) /I predict validating data with classi er ct
& A;":?"?f A;":t"’?f 1

9: end for

10:  for all iPZ [0;m 1] do

11: S j Aifj /I compute sum of row

12: forall j 2 [0;m 1]do

13: Aif- Aifj =S /I normalize by each row
14: end IJOI’

15:  end for

16: end for

Generate confusion groups:
17: for all f 2 F do

18: forall i2[0;M 1]do
19: V. ARG(SORT( fA jjg))
/I sort in descending order, get the corresponding labels
20: Gl f Vog //the rstis always in the set
21: forall j2([1;M 1]do
22: it Ay, > 1=M and A, | Aj, < then
23: GI Gl [fVg
24: else
25: break
26: end if
27: end for
28:  end for
29: end for

Classify with confusion matrix guided ensemble:
30: for all x® 2 X' do

31: forall x'f 2 xtf do
32: et cr (x ) // predict testing data with classier ¢
33: end for
34:  for all fPZ F do
35: sf1 G;te;f /I overall coverage
36: sh MAX( G;M ) MAX2( G;te;, )
/I gap between the rst two
37: sf3 MAX( G;te;f ) // con dence of the top candidate
38: s wis] + wosh + was)
39: end for
40: U ARG(SORT( st))
/I sort in descending order, get the corresponding indexes

41: G GU&U , [/ candidates generated by predicted label
42: forall f 2 F;f 6 Ug do
43: for all i B G do
44: vif i2c Aifj /I voting values for f on'i
45: end fos

. f
46: Vi f2Ff 6Ug Vi
A47: end for
48: ¢ ARG(MAX( Vi)
49: end for

15
Figure 4: Flow chart for fusion by confusion matrix




ones (if any). In our algorithm, we record categories 2 and 3n the candidate

confusion group. That is to say, when this classi er predict 3, it is more likely

to be actual category 2 or 3, i.e.,Gf3 = f2;3g. By generating the confusion
groups of candidates, when a predicted label is given, it iseaasonable to say the
actual label is most likely in this generated group. Figure 4presents confusion
groups construction from steps #17 to #29.

4.4. Confusion Matrix-Guided Ensemble

Using classi er prediction results, we can narrow down the ategory scope. For
example, a predicted labelcomputer keyboardrom a classi er constructed by CT
may in reality be a computer keyboard cellular telephone or calculator. This
type of fuzzy accuracy is the main source of the prediction eors. However,
when one classi er provides the resultcomputer keyboardwith high con dence,
we can be quite sure that the actual category cannot beschool busor water-
melon. Because the confusion categories are sparse, confusioriegories of high
con dence from one method can be a good input for another clas er to cor-
rectly prune results down to the correct result. The narrowed scope of categories
are then adopted by the second, third, and fourth classi ersto vote for the most
con dent category, which is the prediction label of the fused method. It is im-
portant to decide the order of the classi ers for this hierarchical architecture.
For the rst classi er, we wish to narrow down the candidate scope and at the
same time minimize the information loss, so we take the follwing metrics to
supervise the sorting of the classi ers:

Large coverage The coverage of possible labels should be large, i.e., we
prefer a higher probability that the actual label is in the group. The false
negative rate should be as small as possible.

Large gap The gap between the top category and the second category
should be large. This indicates that the prediction result is more stable.
Labels kept in the group should have a large gap with those owide, which
indicate that the group is constructed distinguishably. This second gap is
guaranteed by a proper threshold .

High rst con dence . The con dence of the rst category should be high,

which indicates that th?_,prediction result is more reliable. The con dence

here is de ned by Aj = | Aj;.
An evaluation function consisting of the above metrics shold provide a good
selection of the rst classier. Here we apply a linear-weidited combination
s = wish + wsh + wgsg, where sfl;sfz;sﬁ3 are the total coverage, the gap,
and the rst con dence respectively, and wy; w,, and wy are the corresponding
weights. After the rst classi er, the remaining classi er s are applied to decide
which of the candidate categories have the highest con dere in a weighted
voting manner. The ones with the maximum con dence is returned when they
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Figure 5: Accuracy for ImageNet dataset. X-axis shows the nmber of training
instances for each category. Y-axis shows the average aceay.

are the top instances for each category. When the top candidas are still very

close, and we use the classi ers that are not confused betwed¢he candidates to

further disambiguate the result. For real examples and furher analysis, please
refer to Section 5.3. Figure 4 presents this confusion matx-guided ensemble
from steps #30 to #49.

5. Experiments

Our experiments were designed to address the following qugsns:

How do feature extraction algorithms compare with one anotler?

Given an image category, which feature extraction algoritim performs the
best, and why?

What is the e ect of the size of the training dataset?

How does fusion perform compared with individual classi es, and how do the
results of fusion change with the number of training instanes?

To answer the above questions, we conducted experiments omb datasets: an
ImageNet dataset and a PicasaWeb dataset. The rst dataset s constructed
from ImageNet [12]. As our experiments aimed to study the e ets that training
dataset size has on feature extraction algorithms, we rst glected 100 ImageNet
categories (each with 1100 images), and 10 PicasaWeb categories (each of which
we manually annotate for a total of 11,000 images).

To make a fair comparison, feature vectors extracted from derent algorithms
were set to be the same length: J1000. This was implemented by setting the
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Table 3: Best category statistics.

Single Best| Count Tie for Best [ Count
CT 8 CT&SIFT 1
SIFT 29 CT&ConvNet 5
SIFT&HMAX 7
HMAX 5
ConvNet 33 SIFT&ConvNet 3
HMAX&ConvNet 9

Sports car

S|
03| _HMAX -
| connet

Figure 6: Good examples for HMAX. Categories includeschool| sports car, coil,
duck, and steering wheel

cluster number for color-texture and SIFT codebook, settirg the patch number
for HMAX, and setting the number of hidden units in the last la yer for ConvNet.
After extracting features for each image, the data were diviled into training
and testing sets for the supervised classi er. An 11-fold avss validation was
performed. The data were randomly divided into 11 parts of egal size: 10
parts were used for training and the remaining one for testiig. To evaluate
the feature performance on di erent sizes of training instaces, we also varied
the training data from 1 to 1;000 instances for each category (@00 when
available) and evaluated the accuracy using the same 100 tiésg data set aside
for each fold. When we performed small experiments with onlya part of the
training data, a random subset was sampled. We used SVMs forhe supervised
learning, with PSVM [7] for large-scale data.
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5.1. Results with ImageNet Dataset

Figure 5 shows the overall results for the ImageNet datasetWhen comparing
algorithms, each algorithm excels in categories with certa characteristics. It is
not very meaningful to compare average classi cation accuacies on all categories
because the composition of the testbed can be biased towarae algorithms.
For the ImageNet dataset, SIFT always achieved much better esults than other
algorithms because the dataset contains a large number of tegories favoring
SIFT (We will provide more analysis later). Therefore, we did not analyze the
exact values for overall accuracy, but only focused on the auracy trends with
respect to the growth of the training instance number. We male two observa-
tions. First, when there are only several training instances, it is insu cient to
learn a practical model. No scheme can perform well. For exapie, when there is
only one training instance for each category, all algorithns just perform slightly
better than a random guess. However, as the simple algorithsy such as CT,
do not require much data to learn model parameters, their reglts are relatively
good when training data are sparse. For example, when the nubrer of training
instances ranges from 10 to 100, CT achieves better resulthan HMAX and
ConvNet. Second, when the amount of training data increasescomplex models
such as HMAX and ConvNet can improve the results signi cantly. On large
datasets, they achieve a higher rate of accuracy, and outpéwrm CT when the
number of training data increases to approximately 200 and bove.

Because it is meaningless to only compare the average accagaover all cat-
egories, we provide a comprehensive analysis to examine farhich categories
each algorithm provides the highest classi cation accurag. The left part of

Table 3 shows the number of winning categories of single algthms, and the

right part shows the tied winners (i.e., two methods achievesimilar best results).
ConvNet enjoys the most winning categories (33 out of 100), rd SIFT ranks

second with the ImageNet dataset. HMAX and ConvNet have ninecommon
best categories, which indicates they have similar strendts with certain image
categories because of their similar design. We also noticéat there is no cate-
gory where three or four algorithms all achieve the same begesult at the same
time. In the rest of this subsection, we list each feature extaction algorithm's

advantages and present some illustrative image examples.

5.1.1. Color-Texture Codebook

Though simple, color-texture codebook enjoys the best peoirmance for 11 cat-
egories. Figure 7 shows that these categories exhibit sinait global color and/or

texture distributions. The categories school busand bulldozer both obviously

have high yellow color percentages.Fire extinguisher has a good deal of red.
Penguin exhibits a simple black-white pattern. Laptop displays uniform color

on screens. Eggs have regular pure color or dots as texture. Wine bottle has

constant green bottle with white caption. Category car tire exhibits an obvious

pattern of tire texture.
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Figure 7: Good examples for CT. Categories includeschool bus bulldozer, re
extinguisher, penguin, laptop, egg wine bottle, and car tire.
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5.1.2. SIFT Codebook

SIFT codebook focuses on characterizing local shapes. Afteetecting interest-

ing points in an image, a 128-dimension SIFT descriptor is exacted for each

interesting point. The SIFT descriptor is powerful for recognizing the local

structures of objects. For example, aruler has the narrow, rectangle-like ends
and calibrations for length; both are regular local structures. These types of
local structures cannot be detected by global matching or rgion statistics algo-

rithms. Among the ImageNet dataset categories we construad, 36 out of 100
categories favor SIFT for the local shape matching. These ¢agories adhere to
one of the following conditions.

Matching by Local Shapes.The rst condition relates to objects with regular
local shapes. These can be divided into two types: 1) when paof the object
matches the whole object, and 2) when one object matches mufile objects
of the same category. Successful categories for the rst tyg include ruler and
calculator (see Figure 8), where some images contain a whole ruler or calator,
and some contain only a part of the object. Similar conditiors also exist forchip
and electric guitar, which indicates signi cant local shape adhere to a local-o-
whole mapping. For the second type, the successful categoigcludes pineapple
where images have various numbers of units on pineapples. rBilar conditions
also exist for strawberry, grape and deviled egg where the images have various
numbers of the same object, which can only be solved by a locahatching
algorithm.

Matching by Near Duplication. The second condition is based on SIFT's strength
in detecting near-duplicates. Although some images do not &ve obvious local
structure, their positions of interesting points are stable, and their appearance
based on local shapes is almost the same within categories. itV enough data,
similar images can be recognized in a near-duplicate detdoh way. Good ex-
ample categories includetrilobite, palm, Bengal tiger, sea turtle, octopus Dal-
matian, tabloid, and pizza which are shown in Figure 9, where shapes of objects
in one image can be quite similar to those in others, but may nbbe identical.

5.1.3. HMAX

HMAX extracts global patches. Its strength lies in its ability to identify whole
objects instead of getting confused by focusing on their pds. Examples are
shown in Figure 6. For example,schoolsmust be recognized as a house with
windows but not just windows. Sports car should have the whole shape with
wheels instead of wheels only. The part-to-object feature xraction pipeline
of the HMAX algorithm is a strength in its object detection method. HMAX
outperforms SIFT in terms of recognizing objects as a wholetian its parts.

The other strength of HMAX is that it focuses on dominant signals because of
its max operation in its part selection step (see the HMAX descripton in Sec-
tion 3.3). The max operation eliminates details in a patch. This allows HMAX
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Figure 8: Good examples for SIFT: matching by local shapes. &tegories include
ruler, calculator, chip, electric guitar, pineapple strawberry, grape and deviled
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Figure 9: Good examples for SIFT: matching by near duplicaton. Categories
include trilobite, palm, bengal tiger sea turtle, octopus dalmatian, tabloid, and
pizza
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Figure 10: Good examples for ConvNet: patches with informaitve details. Cat-
egories includelight bulb, bag spoon cellular telephone binoculars, teapot, ear-
phone and hammer.

to outperform ConvNet when applied to objects that may have dstracting de-
tails such as people wearing di erent clothes. Other exampés arecoil, duckand
steering wheelwhere di erent details are recognized better by HMAX than by
ConvNet.

5.1.4. ConvNet

ConvNet also relies on patches and focuses on global shape. h&feas HMAX
focuses on characterizing objects, ConvNet also involvesliing objects apart
from one another. In other words, ConvNet was designed for elssi cation.
ConvNet learns patches carefully from training data through multiple iterations
of convolution and sampling. Indeed, after so much more tumg, ConvNet wins
the most number of categories when applied to the ImageNet daset.

Patches with informative details. As ConvNet involves a deep learning pipeline
to learn feature weighting parameters, it can pick up detaiked information on
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Figure 11: Good examples for ConvNet: patches for deformablobjects. Cate-
gories includefrog, bear, owl, snail, ibis, may y , beaver and mushroom
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an object if those details may help telling objects apart. While enjoying better
overall classication accuracy, it is understandable that ConvNet may over t
training data. One positive example for ConvNet is thelight bulb (Figure 10),
which has some regular shapes with various decorations. Byugt extracting
the rounded top, the information may still be ambiguous in regards to telling
a light bulb from a ping pong ball for example, so a set of well-tuned patcbs
characterizing the interiors can be useful. The categoriebagand spoonare other
examples which have a rectangular shape with various patters and orientations.
The cellular telephoneitself has a regular shape, and di erent models may have
vastly di erent appearances. Though SIFT can perform well with computer
keyboardimages (see Figure 8), each of which has a similar appearanc8IFT
does not do well with the category cellular telephone Similar categories also
include binoculars, teapot, earphone and hammer. While shapes are important
for classi cation, details are informative, and in some cags a learned set of
patches can lead to more accurate results.

Patches for Deformable Objects.ConvNet performs well at identifying deformable
objects such as thefrogs and bearsin Figure 11. With adequate training in-
stances, ConvNet can capture an object at di erent orientations and di erent
interior appearances. These living creatures do not have aegular local shape,
so SIFT cannot detect interesting points well. HMAX does not perform as well
as ConvNet when only parts of an object appear in an image, sicas frogs'
bodies or bears' heads. The random patch sampling algorithnin HMAX gives
it less opportunity to capture object parts at di erent loca tions. These are rea-
sons why ConvNet gives the best performance on deformable f@tts. Similar
categories also includeowl, snail, ibis, mayy, beaver and mushroom which
are all deformable objects solved by ConvNet when given a lge-scale training
dataset.

Notice that ConvNet often requires more training data than other schemes to
start performing well. If we x the number training instance s as 100, ConvNet is
often outperformed by HMAX or SIFT. When the number of traini ng instances
increases, ConvNet is able to recognize complex objects. Wil further discuss

the impact of training data size in Section 5.2.

5.2. Data-Driven Results with a Large Dataset

5.2.1. PicasaWeb Dataset Construction

Our goal was to construct a large-scale dataset with many imges in each cate-
gory. Therefore, we need éhuge number of imagesnd frequent tagsfor image
collections. The procedure for constructing such a set incldes the three parts.

Image Collection. To ensure a huge number of images, we collected&million
of images from PicasaWeb with a \creative commons" license ered by users,
which allows use and sharing for non-commercial purposes.
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Tag Selection. To pool frequent tags, we applied a data-driven scheme. A tal
of 30,000 images were randomly selected from the dataset and anreied man-
ually by 40 raters. Each rater explored each image to annota as many tags as
possible. These tags were then counted and sorted by frequeyn The top tags
were frequent tags for the selected images. After a manual tering to remove
meaningless ones, the tags are processed according to thisler in the following
steps.

Image Annotation for Each Tag. The most frequent tag was selected for an-
notation rst. Among the correlated images with the tag from the annotated
30;000 preprocessing set, up to 500 images were selected as &ee Color
histograms were extracted and applied in a k-nearest neighdr manner to sort
all the remaining images in the 68 million image dataset. These images were
scanned by the raters one by one to check whether it is a posite appearance of
the corresponding tag. If we collected more than 11000 images containing the
tag, this tag was marked as \successful," and we moved on to th next tag with
the same procedure. Otherwise, if 20000 images were already scanned, but we
still did not have 11;000 positive ones, we rejected the tag and moved on to the
next one. Note that we assume that the negative appearancesf dags always
outnumber the positive ones; this is also the real case in piice. Therefore, we
gathered 11 000 positive images and at least ;1000 negative images for each
\successful" tag.

5.2.2. Experimental Results

For the purpose of this large-scale experiment, we collecte10 \successful" cat-

egories each with an excess of 1200 labeled instances. These categories are as

follows: shoulder baghorse/Equus caballusbaby/babe/infant, seashore/coast/seacoast/sea-
coast, city/metropolis , mountain/mount , afterglow, gravel/crushed rock dog/domestic
dog/Canis familiaris , and motorcycle/bike. Figure 12 shows the average category-
prediction accuracy, whereas Figure 13 presents the resultof individual cate-

gory examples. We can make three critical observations thatare detailed as

follows:

Data-Driven Works

When the training dataset size increases to 1®M00 for each category,
all algorithms converge to a similar level of average accuy as in Fig-
ure 12. This illustrates why the fusion algorithm performs far better
when the training data size is small but performs only a little better than
individual methods when the training data size is large. Moeover, as
shown in Figure 13, for most individual categories, such ashoulder bag
city/metropolis , and dog/domestic dog/Canis familiaris, all feature extrac-
tion algorithms reach almost the same level of class-predion accuracy.
It is surprising to see that the simplest model, CT, achievescomparable
results when compared with other advanced models and applikto a large-
scale PicasaWeb dataset. When the amount of training data isbundant,
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Figure 12: Accuracy for PicasaWeb dataset. X-axis shows theaumber of train-
ing instances for each category. Y-axis shows the averageagacy.

a simple model can also be competitive, which has also beenrcaned

for the text domain [55]. We also noticed that, for some categries, such
as mountain/mount and motorcycle/bike, it appears that room for im-
provement exists for more training instances. Categoriesdvoring each
algorithm still exist, which agrees with the previous experments.

Di erent Winners on Di erent Testbeds .

As we have illustrated through a per-category analysis, dierent algo-
rithms may work better for di erent image categories. SIFT is the overall
winner for the ImageNet dataset, whereas SIFT is almost the wrst, and
CT is the overall winner for the PicasaWeb dataset. In other words, two
di erent datasets reach di erent conclusions when comparng feature ex-
traction algorithms. This is because the ImageNet dataset ontains more
categories that are suitable for SIFT but the PicasaWeb dataet contains
less. Results similar to this have often been used to justifyone algo-
rithm as being superior to another in the literature without noticing the
dataset-composition limitation. Only a careful analysis using individual
categories is able to provide su cient justi cation to clai m an algorithm
to be superior to others.

Di erent Winners with Di erent Training-Size Values

As discussed in the previous section, the best algorithm foclassifying a
category can change with a di erent number of training instances. This
observation was also demonstrated for the PicasaWeb dataseAs shown
in Figure 12, when the number of training instances is approimately
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Figure 13: Examples for large data. Categories includechoulder bagcity, dog
seashore mountain, motocycle gravel, horse baby and afterglow.
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10, CT is better than HMAX, and SIFT is better than ConvNet, wh ich

demonstrates that when the training data are sparse, the sirple models
may achieve better results than complex models. With the incease of the
number of training instances, however, complex models, shicas HMAX

and ConvNet, can achieve better results. In Figure 12, whentie number
of instance increases beyond some level (approximately 2@stances on
this dataset), the performance of HMAX and ConvNet improve. The

above two descriptions were also demonstrated in the Imagedt dataset.
Moreover, di erent algorithms may converge to similar good results when
the training data are abundant. These results should warn tlose who want
to compare algorithms that the comparison must be carefullyperformed on
several sizes of training data to justify its conclusion. Caonbined with the

second observation, both the testbed size and test-categgrcomposition
can a ect the conclusion of an algorithm-comparison.

5.3. Fusion Evaluation

To build a category-classi er relationship for fusion, we glit the original training
data randomly into 90% training and 10% validating (up to the nearest integer).
We train individual classi ers with the training data and pr edict the validating
data to construct confusion matrices in Section 5.3.1. Our dision algorithm
begins with at least two data instances because both trainig and validation sets
require at least one data instance. The parameters for the fsion in Section 5.3.2
are as follows: gap threshold set to 0:05 and the weightsw; = 0:5, wy, = 0:25,
ws = 0:25. This section shows the fusion results for the ImageNet daset.
Fusion results for the PicasaWeb dataset are shown togethewith the previous
large data analysis.

5.3.1. Confusion Matrix

Previous sections discussed di erent performances with dérent categories. In

fact, this was the inspiration for our fusion algorithm. By | ooking into the details

of classi cation results, we constructed the confusion matices in Figure 14,
which reveal insights of feature di erences among di erent feature extraction

methods. The rst four sub gures are confusion matrices for the four feature

sets, CT, SIFT, HMAX, and ConvNet, respectively. The last sub gure is for our

fusion results, which is discussed in the fusion section. Weelected the highest
values for non-diagonal positions until 10 categories wereovered. Therefore,
the categories in each gure look dierent. In the confusion matrix, each row

corresponds to the ground truth label, whereas each columnarresponds to the
predicted label. Each value in the confusion matrix is betwen 0 and 1.

The pizzaand deviled eggpair su ers from high confusion values for all methods
(although HMAX has a slightly lower confusion value than the rest). This
confusion arises because both categories have complex tapgs with similar
color, texture and shape. CT misclassi es manytabloids as belonging to the
category disc because they both have various amounts of text on the surface
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Fortunately, this confusion does not happen through the \eyes" of the other
three feature sets. SIFT nds it hard to distinguish hammer or knife from

pincer for their similar local structure, but other feature sets easily address this
ambiguity. CT may nd their slightly di erent color and HMAX  and ConvNet
may nd their global shape. HMAX appears to meet its bias condtion for

the categorieslong trousers and spoon In this condition, when a classier
constructed by HMAX predicts a label long trousersor spoon these consistently
have low con dence levels. This confusion by HMAX can be sultantially helped

by using the other algorithms. ConvNet cannot distinguish the categoriesgarlic
and deviled egg Other features can disambiguate this pair well however. Fo
most of the confusion conditions, there is not much overlap o all feature sets.
Our fusion algorithm is designed to use the trusted results ad dismiss the
confused results.

5.3.2. Fusion

As introduced in Section 4, the four classi ers are fused to onstruct a more
powerful ensemble. For comparison, we also build a naive wgited-voting fusion
algorithm. The voting scheme is quite simple: calculate thecon dence for each
category when validating data as the weights, and vote acrasthe four features.

Refer again to Figure 5. Our fusion result performs better tran both individual
features alone and the weighted voting method. The key reasofor this is our
full usage of the confusion matrices.

Refer again to the confusion matrices presented in Figure 14 The gure at
the bottom is the confusion matrix of the fusion scheme. Cledy, the confu-
sion values in that matrix are smaller than those in the confision matrices of
the individual classi ers. Speci cally, for the pizzaand deviled eggpair, their
confusion value is still high in the fused matrix but less than that in either of
the individual matrices. This example indicates that our fusion scheme reduces
confusion and thus improves classi cation accuracy.

Let us use anhammer example to explain how the fusion scheme helps. The
SIFT algorithm returns pincer. The CT algorithm returns sextantas Figure 14
shows. The HMAX algorithm returns umbrella, and the ConvNet algorithm
returns earphone None of these results is correct, but we can extend them
for fusion. The SIFT algorithm extends the candidates to hammer, knife, and
pincer with a coverage of 81%. The CT algorithm extends the candidats to
hat, sextant deviled egg and pineapple with a coverage of 33%. The HMAX
algorithm extends the candidates to umbrella, skeleton key and ruler with a
coverage of 22%. Lastly, the ConvNet algorithm extends the candidates to
earphone spectaclesand steering wheelwith a coverage of 381%. So the highest
coverage SIFT is selected for the rst classi er. Hammer, knife and pincer are
voted on by the remaining three algorithms. In this example,hammer is voted
with the highest con dence, and so the fusion algorithm predcts the class as
hammer. No individual features provide a correct result on this cag, but a
fusion algorithm can mine correlations between categoriesnd take advantage
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of multiple feature-extraction algorithms to obtain a bett er chance of getting a
correct result.

We also observe that when the number of training instances ismall, the fu-
sion approach signi cantly increases the accuracy. Howewe when the number
of training increases, the gap between the fusion and indiviual methods de-
creases. The reason is that when the number of training instaces is small, each
feature is insu cient for learning a great deal of informati on, which leads to
more confusion. With a fusion algorithm, the confusion stenming from lack of
information is greatly decreased. When the number of trainhg instances in-
creases, however, confusion of this sort decreases, andcaringly, so does the

gap.

6. Conclusion

In this paper, we investigated four representative featureextraction algorithms,
color-texture codebook (CT), SIFT codebook, HMAX, and conwlutional net-
works (ConvNet). Comprehensive experiments were conductethat revealed
di erences between these algorithms. We discussed our reks using two dif-
ferent views. The rst view is the image-category view. We povided an ex-
tensive analysis of di erent categories, and found that di erent algorithms each
have their own advantages that can give them an edge in di erat categories.
This nding is one of the main reasons why di erent algorithm s may achieve
signi cantly di erent or even contradictory results with d ierent datasets. In
addition to the inter-category analysis, this actually reveals patterns of intra-
category variance. Dierent feature extraction algorithms discover di erent
intra-category invariant information, and thus perform di erently. The second
view is the number of training instances. We observed that dierent algorithms
may perform di erently depending on the number of training i nstances. Simple
algorithms tend to perform better when the training data size is small. When the
number of training instances reaches up to and beyond a certa amount, com-
plex models can experience a sudden jump in accuracy. To ange even larger
number of training instances, we constructed a new large-sde image dataset
from PicasaWeb. With this dataset, we observed that all the bur algorithms
we studied converge to a good accuracy level with an abundaeoof training in-
stances. The observation demonstrated the validity of the @ta-driven approach.
Our experimental results reveal that both training data size and dataset cate-
gory composition can a ect the results of algorithm comparisons. Extreme care
must be taken by researchers to avoid such pitfalls to ensur¢he reporting of
reliable results.

Finally, we devised and studied a fusion algorithm based onanfusion matrices
to harvest synergies between these four algorithms. The keidea is that when
an algorithm is confused between classes and y for recognizing an object,
one should direct the recognition of the object to an algorihm that can clearly
distinguish the two classes. Our fusion method can improve lass-prediction
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accuracy by substantial margins when the training dataset &e ranges from

small to moderate (below 1 000). When the dataset size is large (approaching
5;000), improvement still exists, although it is less signi cant. Fusion methods

that can take advantage of having di erent views of the raw data can continue

to improve class-prediction accuracy even when individualiews have reached
their limits.

We believe that our proposed confusion matrix-guided fusio scheme can be
formulated into an optimization problem to obtain statical ly optimal class pre-
diction. Our future work will be devoted into formally formu lating the problem
and comparing di erent design considerations.
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